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Abstract: The Jacobson-Stockmayer theory of cyclization equilibria Ri-Mx-R2 <=* C-Mx + R1-R2 where C-Mx is the cyclic 
x-mer comprising n — vx bonds is elaborated to take account of restrictions on the directions of the bonds joined in ring closure. 
On the assumption that bonds formed are equivalent to those broken, the equilibrium constant is Kx = W(O)[2To(I)]/O-CXNA 
where W(T) is the probability density function for the n-bond chain vector r; To(T) is the probability distribution, when r = 0, 
of y = cos A0, Ad being the angle between a hypothetical bond n + 1 and bond 1; <TCX is the symmetry number of the ring; and 
/VA is Avogadro's number. To(I) may be expanded in averaged tegendre polynomials, (P^ ) r = 0 , with argument iv=o. The av­
eraged polynomials are expanded in the quantities (Pkr2p), which can be evaluated by Monte Carlo methods applied to appro­
priate rotational isomeric state models; alternatively they may be expanded in moments {ymr2P), lower ones of which can be 
computed by matrix generator techniques. Calculations for various chains with 10 < n < 50 invariably yield 2To(I) < 1, indi­
cating unfavorable correlations between the directions of terminal bonds. These calculations are consistent with the low values 
of Kx generally observed in this range, sometimes with a minimum at n = 10 to 25. The asymmetry of the distribution W{T), 
as manifested in the persistence vector a = (r>, in conjunction with the necessity for bond n to approach atom 0 from a direction 
opposed to vector a provides a qualitative explanation for this well established pattern of behavior of Kx for cyclic homologues. 
Calculations for hypothetical chains with acute bond angles yield 2To( 1) > 1 in confirmation of the foregoing explanation. The 
preferential formation of small rings (n = 5 to 8) is explicable conversely by favorable directional correlations in conformations 
for which r » 0. 

Primary Formulations 

Consider the cyclization process 

- M , - ^ C-Mx (1) 

where - M x - is a chain molecule comprising a sequence of x 
repeating units and C-Mx is the corresponding cyclic com­
pound. The repeating unit may, for example, be -CH2- , 
- C H 2 C H 2 O - , or most notably - S i ( C H 3 ) 2 0 - . The x-meric 
acyclic reactant - M x - may be a bifunctional species X - M x - Y 
from which the by-product XY is eliminated in process 1. For 
our purposes it is advantageous to regard it as a biradical, as 
the representation above implies, even though the occurrence 
of the biradical may be hypothetical. 

The corresponding combination reaction between two 
acyclic species may be represented by 

- M x - + -My- *t -Mx+y- (2) 

or by 

X - M x - Y + X-M^-Y <=s X-Mx+y-Y + XY (2') 

The bond forming processes in (1) and (2) are assumed to be 
identical. By comparing these two processes, the one involving 
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cyclization and the other combination, we may educe the ef­
fects of constraints associated with formation of the cyclic 
species. Specifically, subtraction of (2) from (1) gives 

- M x + > - ^ -My- + C-Mx (3) 

This equilibrium is governed by the cyclization constant '"3 

Kx = K1ZK2 = [ -M,-] [ c - M x ] / [ - M x + , - ] (4) 

The nature of the terminal groups, expressed noncommittally 
by dashes, obviously is immaterial. What matters is that the 
unspecified terminal groups in the species -M^,- and -Mx+y-
be chemically equivalent. Then Kx measures the propensity 
for cyclization. It equates to the concentration of the cyclic 
compound when the concentrations of - M ^ - and -M x + 1 , - are 
equal. 

The foregoing scheme is applicable to cyclization processes 
in general. It is readily adapted to the treatment of chain «=s 
ring equilibria in polymeric systems. Then process 3 is con­
strued as the abstraction of a cyclic species comprising x units 
from a longer chain of x + y units. The establishment of this 
equilibrium inevitably will be accompanied by equilibration 
between various linear species. The concentration of the linear 
species of size y is then proportional to p?~' (1 — p), where p 
is the extent of reaction for the acyclic molecules,1 i.e., the ratio 
of interunit bonds formed to the total number of such bonds 
that may be formed according to the processes 2 or 2'. 
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Figure 1. Acyclic segment of n atoms, 0 through n — 1, in a conformation 
approaching the requirements for cyclization. See text for details. 

Hence, 

Kx = [c-MJp- (5) 

a relationship due to Jacobson and Stockmayer.1 In the limit 
of high extents of reaction, where px « 1 and the average de­
gree of polymerization (y) is large, this reduces to the simple 
equality1 

Kx = [C-Mx] (50 

The acyclic x-meric segment from which the ring is formed 
comprises a = vx chain atoms joined by n — 1 bonds, v being 
the number of chain atoms per repeat unit. The atoms of the 
segment are numbered 0 to n — 1, as in Figure 1. The bonds 
are indexed 1 to n — 1, with bond i connecting atoms i — 1 and 
/. The angles between consecutive bond vectors are denoted 
by 0i, etc., as indicated in Figure 1. These are the supplements 
of the conventional bond angles, K-8. The conformation of the 
x-meric acyclic segment is specified by rotations <pi, <?$,..., 
<f„-2 about the n — 3 internal bonds. Formation of the ring 
involves establishment of bond n between atoms 0 and n — 1. 
In Figure 1 this anticipated bond is shown dashed; it joins atom 
n — 1 with a hypothetical atom n. According to the scheme 
represented in this figure, ring closure involves coalescence of 
atom n with the initial atom 0. A hypothetical bond n + 1, 
shown dotted in Figure 1, is appended for reasons that will be 
apparent below. 

Closure of the sequence of n — 1 bonds to form the n-
membered cyclic molecule is contingent upon fulfillment of 
three conditions: (i) atom n — 1 must be situated at a distance 
from atom 0 equal to the length of anticipated bond n, i.e., the 
vector Tn-1 spanning atoms 0 to n — 1 must be of the required 
length; (ii) the direction of this vector with respect to bond 
vectors 1 and n — 1 must yield acceptable bond angles x-0„_i 
and Tr-On at atoms n — 1 and n (or 0), respectively, within 
tolerable limits; and (iii) the conformation specified by tor­
sional angles ip\, ipi,..., <Pn, properly weighted according to 
its probability of occurrence with due regard for torsional 
strain, must be acceptable. 

Our procedure is to generate a sequence of n + 1 bonds on 
the basis of a rotational isomeric state (RIS) scheme3-6 ap­
propriate to the chain considered. For the fulfillment of con­
ditions (i) and (ii) it is required that the vector Tn = r that spans 
bonds 1 through n (see Figure 1) must vanish within a volume 
element <5r and that the hypothetical bond n + 1 must be par­
allel to bond 1 within acceptable limits. Compliance with the 
stipulation r « 0 assures that condition (i) is fulfilled. At the 
same time, the correct valence angle at atom n — 1 is guaran­
teed by the employment of the proper value of Bn- i in the RIS 
procedure.3,6 Condition (ii) as it relates to 8„ further requires 

that 7, defined by y = cos Ad, where Ad is the angle between 
hypothetical bond n + 1 and bond 1, must fall within the range 
1 - 5 y to 1. 

Bond lengths and bond angles are assigned their normal 
values in the RIS generation of a conformation of the sequence 
of n + 1 bonds. The conformation is specified by torsional 
angles ^ to <p„, inclusive. These are assigned discrete values, 
suitably chosen in order to optimize the representation of the 
conformational characteristics of the real chain by the RIS 
model.21 In the process of generating these conformations, each 
of them is accorded a probability of occurrence proportional 
to its statistical weight, the latter being determined by the 
combination of rotational states {<£>} for the given conformation. 
It follows that the procedure fulfills condition (iii) above as it 
pertains to bonds 2 to n. The conformation of bond 1, deter­
mined by the mutual orientations of bonds 2 and n, is not 
comprehended by the procedure described. Hence, the ac­
ceptability of the conformation imposed on bond 1 must be 
separately considered if full compliance with condition (iii) is 
to be required. 

Elaborating the Jacobson-Stockmayer1 theory to include 
conditions of angle compliance,2-3 we express the molar stan­
dard-state free-energy change for reaction 1 as follows: 

AG0Ci) = AG*-RTIn [W(O)ST][T0(I)Sy] 

X L &0,l(<Pv)!><Pv (o-a/cTcx) (6) 

where W(r) is the probability of the value r for the end-to-end 
vector per unit volume, and 5r is the admissible departure from 
r = 0 for the formation of the required bond; y = cos A0 and, 
hence, d7 = —sin (Ad) d(A8) = —(27r)-1 do; is the measure of 
increment of solid angle; Tr(7)57 is the probability that y as­
sumes the specified value within the range 67, with r having 
the value denoted by subscript; •£r,-y(<A()<V„ is the probability 
of a torsional angle ^, for bond 1, within the permissible range 
S<pn, when r and 7 assume the values denoted by subscripts; the 
summation includes the several admissible conformations in­
dexed by 77; o-a and aQX are symmetry numbers for the acyclic 
chain and for the cyclic x-mer, respectively; and AG* is a 
function of temperature that expresses the molar free energy 
change for bond formation when the reacting partners have 
been juxtaposed in the manner stipulated. 

For the corresponding intermolecular reaction 2, all values 
of 7 and (pare equally probable; i.e., r<)(7) = 1^ for —1 < 7 < 
1 and $0,1 (<p) = xh.T for 0 < <p < lit. Hence, the molar standard 
free energy change is 

AG°(2) = AG* - RTIn [NAaJr(Sy/2)(Z5<pn/27r)] (7) 

where A^A is Avogadro's number and all species are in their 
standard states at concentrations of one mole per unit volume. 
The geometrical constraints Sr, 5y, and &<pn and the free energy 
of bonding AG* are assumed to be the same as for the cycli­
zation process. Inasmuch as the bonds formed are equivalent, 
these assumptions should hold accurately, except for small 
rings that may be subject to bond angle and/or torsional strain. 
Cyclic compounds of this latter description are beyond the 
scope of the present treatment. 

By combination of eq 6 and 7, we obtain 

AG°(3) = -RT In [2^(O)T0(I)I0/<WVA] (8) 

where 
$0 = 27r£$0.i(<A,)5<p,/L<5<ft, (9) 

measures the probability of compliance of the torsion angle <p 
for bond 1 with the requirements for an acceptable confor­
mation relative to this probability for the corresponding acyclic 
union. It follows from eq 8 that the cyclization equilibrium 
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constant is given by 

Kx = K13) = 2W(O)T0(I)Io/<WVA (10) 

Consider the set of conformations for the x-meric sequence 
that meet the distance requirement r = 0 within 5r. If among 
these conformations the direction of hypothetical bond n + 1 
is distributed at random relative to bond 1, i.e., if the directions 
of these two bonds are uncorrected when the distance re­
quirement is met, then the probability density of y is uniform 
over the interval - 1 < y < 1. It follows that T0{y) = 1Z2 for all 
admissible values of 7, and in particular for y = 1, when the 
directions of bonds 1 and n + 1 are uncorrelated. The torsional 
requirements for bond 1 in the ring formed by closure should 
be less stringent than the directional constraints. Hence, if the 
length (and "flexibility") of the sequence suffices to suppress 
directional correlations, the vanishing of torsional correlations 
for bond 1 in those conformations for which r « 0 and y « 1 
seems assured. Then, $0,1 (v) = l/2ir for all <p, and $0 = 1-
When these conditions are fulfilled, the cyclization equilibrium 
constant simplifies to 

Kx = W(0)/<TCXNA (11) 

Under the further assumption that the density distribution 
function W(r) is Gaussian, one obtains1-3 

Kx = (3/2w(rn
2)y/2/<rcxNA (12) 

where (r„2) is the mean-square end-to-end length of the 
random x-meric sequence comprising n = vx skeletal bonds, 
v being the number of such bonds per repeating unit. If (r„2) 
is taken to be proportional to «, which is legitimate only for 
sufficiently long chains3 (and in absence of effects of excluded 
volume7,8), then 

Kx = (3/2xC„/2)3 />3 /2<rc^A (13) 

where C=o is the limiting value of the characteristic ratio, i.e., 
C„o = Hmn-»((r2)o/«/2), / being the bond length. The sub­
script 0 denotes absence of perturbations due to excluded 
volume or other effects. 

Equation 13 is a restatement of Jacobson and Stockmayer's 
result.1 It expresses the limiting form for very large n or x. 
Since, as they pointed out, the symmetry number acx is pro­
portional to x (e.g., for polysiloxanes it is 2x) and therefore to 
n, the cyclization constant is asymptotically proportional to 
M-5/2 j 0 recapitulate, the approximations underlying this 
relationship are as follows: (1) the neglect of angle correlations 
leading to eq 11; (2) the assumption that W(T) is Gaussian, 
which leads to eq 12; and finally (3) expression of (rn

2) as 
linear in n. All of these approximations must fail as n de­
creases. 

Experimental cyclization constants Kx for poly(dimethyl-
siloxane)7-9 (PDMS) extending up to rings with x = 202 units, 
or n = 404 bonds, appear to converge to values only ca. 10 to 
25% below those calculated according to eq 12 or 13 for x > 
75 units. This confirmation of the Jacobson-Stockmayer 
theory is achieved without benefit of adjustable parame­
ters 2,3,8,9 A S t r i e r m g s j z e ;s diminished, the ratio of observed 
to calculated values of Kx decreases; it passes through a min­
imum at x = 12. At x = 10-12 the observed Kx are only about 
one-fourth of the values calculated; see Figure 2 of the fol­
lowing paper.10 As x decreases below ten units, the observed 
Kx increase rapidly; for 4 < x < 6 they exceed predictions of 
eq 12 from values of (rx

2) calculated according to RIS theo­
ry 3,1 1 p o r t I l e tetrameric ring (JC = 4) of eight atoms, this being 
the ring of the smallest size that can be formed without 
bond-angle strain (the bond angles being 110° and ca. 143° 
at Si and at O, respectively), Kx is about twice the value pre­
dicted by eq 12. 

This pattern of the cyclization constants within a series of 

homologues is duplicated, qualitatively, in a number of other 
series of bifunctional compounds. In some instances the effects 
are much more pronounced than in the cyclic PDMS homo­
logues. If, in a series of organic aliphatic condensates, the cyclic 
compound of the minimum size that is strain free comprises 
rt = 5 to 7 members, the observed cyclization constant may 
exceed the value calculated according to eq 12 by an order of 
magnitude or more, the cyclic compound being the only 
product of condensation even in absence of a diluent. Usually 
Kx decreases rapidly with increase in n. The tendency to cyclize 
often passes through a minimum for x (or for n) approximately 
twice the optirhum size in a series of homologues, as was shown 
many years ago by Stoll and Rouve12 and by Carothers and 
coworkers.13 In the vicinity of the minimum, Kx may depart 
from the value calculated according to eq 12 to an even greater 
degree12 than for the PDMS series (see Figure 2 of the fol­
lowing paper10). Such observations are widespread, of long­
standing, and generally well known. Explanations have been 
wanting. 

The pronounced propensity to form small rings of the fa­
vored size finds ready explanation in the analysis of directional 
requirements, as we have pointed out previously.2,3 This is a 
consequence of the fact that fulfillment of the distance re­
quirement r » 0 when n approximates the minimum size per­
mitting ring closure without bond angle strain virtually assures 
that directional requirements are met as well. For a tetrahe-
drally bonded, five-membered ring the closed conformation 
for which r = 0 is very nearly planar; it is unique, and free of 
appreciable bond angle strain. In the case of the homologous 
six-membered sequence, preference for bond staggering yields 
r « 0 in only two conformations. These are the chair forms in 
which the bond formed by closure assumes either the g+ or the 
g_ conformation. Thus, an acceptable bond angle is a con­
comitant of closure (r = 0) for these small rings. For the te-
trahedrally bonded six-membered ring, absence of torsional 
strain is assured as well, provided that staggered conformations 
are dominant to the virtual exclusion of all others. 

It follows that To(I) 57 may approach unity for these small 
rings. Hence, 2To(I) conceivably may approach I/57. The 
magnitude of 67 is difficult to estimate. A value of 2To(I) 
much greater than unity is clearly indicated, however. Si­
multaneously, $0 will exceed unity if, as in the case of the 
tetrahedral six-membered ring or in the eight-membered 
PDMS ring, bond staggering prevails. Both factors enhance 
Kx according to eq 10. On the other hand, such short sequences 
are decidedly non-Gaussian, and W(O) may be lowered sub­
stantially on this account. The enhanced formation of small 
rings indicates that the former factors outweigh the latter, and 
this is in accordance with expectation. 

Previously, the suggestion has been made that the minimum 
in A^ (obsd)/.^(calcd) for rings of intermediate size is a 
consequence of unfavorable bond directions for closed con­
formations.2 In this paper and the two10'14 that follow we in­
vestigate the role of the bond direction factor 2To(I) in eq 10, 
and at the same time examine JT(O) and its departure from the 
Gaussian probability density at r = 0. Rings for which x (or 
n) exceeds the value where Kx exhibits a minimum are of 
primary concern. The torsional factor is ignored on the grounds 
that its effect probably is small for the large rings here con­
sidered. Accordingly, we replace eq 10 by 

Kx = 2^(0)r0(l)/ac x iVA (14) 

The Direction Correlation Factor. Theory 

It is expedient to expand the direction correlation distribu­
tion Tr(7) in the Legendre polynomials Pk(y)', i-C-, we let 

Tr(7) = t Ak,TPk(y) (15) 
k = 0 

Flory, Suter, Mutter / Theory of Macrocyclization Equilibria 
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Evaluation of the coefficients Ak,r by appeal to the orthogon­
ality of these polynomials in conjunction with the normaliza­
tion condition 

X' rr (7) d7 = 1 

yields 

2 r r ( 7 ) = £ (2*+l)<J»*>,J»*(7) (16) 
A-O 

where the (Pk)r are averages of the polynomials over all 
configurations having the specified value of r, i.e. 

(Pk)1= J^ Pk(y)rr(y)dy (17) 

In terms of the moments 

< 7 m > r = J1 ymTt(y) dy 

the averaged polynomials are 

(Po)r = 1 

(Pi)r=(y)< 

<P2)r=W(y2)r-i) 

(P 3 ) r= 1 /4 (10<7 3 >r-6(7>r ) 

etc. (18) 

In the circumstances of immediate interest, r = 0 and 7 = 
1 giving 

2 r 0 ( l ) = E (2k + l)(Pk)t=o 
k=Q 

(19) 

If the distribution of directions of bond n + 1 relative to bond 
1 is random, all terms beyond the first (unity) vanish in eq 19. 
If the distribution function To(7) is linear in 7, only the first 
two terms in eq 19 are nonzero; if it is quadratic in 7, the first 
three polynomials suffice; and so forth. 

The averaged polynomials defined by eq 17 are given al­
ternatively by 

(Pk) r = Zr S.-S ^(7)exp(-£ | l} /*r )d | l | /d r 

(20) 

where jl| is the set of all skeletal bond vectors 1 to n + 1, and 
the integrations include all configuration space jl} in which the 
chain vector spanning bonds 1 to n conforms to its specified 
value r. The configuration integral subject to the same condi­
tion is 

Zr = § • •' f txp(-E{l\/kT) djl}/dr (21) 

Fourier inversion (see Appendix A) allows (Pk) r to be ex­
pressed as a series in powers of r2/(r2) with coefficients de­
termined by (Pkr2?) wherep = 0, 1, 2, . . . , and () denotes 
the average without restriction on r. Specifically for r = 0, the 
result is 

(Pk)r=o = (Z^0/Z)-1(3/27r(r2»3/2 J ^ 0 

- V w + ( | ) 2 ^ / M - g ) 3 ^ / w + ...] (22) 
where 

A o = (Pk) 

A - 2 - {r2) -(Pk) 

f _ (Pk^) 10 (Pkr
2) 5 / M - ^ y r - y ^ y - + ~(Pk) 

(Pkr
6) (Pkr

4) , 35 (Pkr
2) 35 _ ^Kr*) (Pkr

4) _. , .«. , 
Jk:6~ (r2)i 7 (r2)2 + 3~(J2T~J{Pk) 

etc. (23) 

In eq 23, (Pk), ( /V 2 ) , etc., denote averages over all config­
urations regardless of r, and Z is the configuration integral 
likewise without restriction on r. The numerical coefficient of 
the /th term in A-2p

 1S given by 

(2p + 0!/(-6^-1O" - l)!(2p - 2/ + 3)! 

The density distribution of vector r is given by3-4 

W(T) = Zr/Z (24) 

The ratio of partition functions appearing in eq 22 is the density 
W(O) atT = 0. 

In the approximation that W(T) is Gaussian, Zr=o/Z = W(O) 
* (3/2x(/-2))3/2. The approximation can be improved^15 in 
principle to any desired degree, by replacing (Zr„o/ 
Z)_1(3/27r(/-2))3/2 in eq 22 by the reciprocal of the Hermite 
series 9f (r) which for r = 0 is 

# (0 ) = 1 + 3 • 5£4 + 3 • 5 • 7#6 + . . . (25) 

where 

g 4 =- ( l / 2 3 ) ( l - 3 ( r 4 ) / 5 ( / - 2 > 2 ) 

g6 = -(l/23-3!)[3(l-3<r4>/5</-2)2) 

- ( l - 3 2 ( ^ ) / 5 - 7 - ( r 2 ) 3 ) ] 

etc. (26) 

(see ref 3 or 6). Then 

(Pk)r=o= [# (0) ] - I A,0 

~ 2 A;2 + -7A/4 - ^jA/6 + • 2 4 , (27) 

The quantities (Pkr2p) required for the evaluation of the 
coefficients A. 2i may De estimated in good approximation by 
resort to Monte Carlo methods16 using conditional probabil­
ities deduced from a suitable rotational isomeric state scheme 
for analysis of the configurational statistics.3 In order to avoid 
accumulation of errors in the several moments, it is preferable 
to take the average over the entire polynomial A ^ defined in 
eq 23. The sum in eq 22 and 27, truncated at the desired term, 
can be averaged likewise as a whole. In this way (Pk)r=o is 
obtained directly. The calculation of 2To(I) may be carried 
out similarly. 

Alternatively, the quantities (Pkr2p) can be evaluated from 
the moments (ymr2P), where m = k, k — 2, etc., these mo­
ments being combined according to the definitions of the Le-
gendre polynomials, as given in eq 18 but without restriction 
on r. Thus, for example, 

(P3r
2P) = V4(IO<73r2^) - 6(yr2P)) 

The moments (ymr2p) may be computed by the exact matrix 
multiplication methods developed for implementation of the 
RIS scheme (see Appendix to the following paper10). The 
generator matrices required for these calculations become 
excessively large for p > 2, however. 

Results of Exploratory Calculations and Discussion 

The simplest model chain to be considered consists of a 
succession of identical bonds joined at identical angles with 
rotation about each bond represented by three states of equal 
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9 = 110« i 

9 •- 100° \ \ 

8=70° ' 

0 10 20 30 

n 
Figure 2. Averaged Legendre polynomials of the first order, (P] ),_0, for 
chains of identical bonds joined at identical angles 6, with equally weighted, 
neighbor-independent rotational states at torsional angles 0°,±120°. 
Calculations were carried out according to eq 27 truncated at / i ; 6 and with 
Ji[Q) = 1 using Monte Carlo methods as described in the text. Bond angle 
supplements 6 are indicated with each curve. 

weight at torsional angles ¥3=0, 120, and -120° measured 
from trans. The repeat unit spans one skeletal bond and all 
units are identical. Rotations about the various bonds are taken 
to be mutually independent; i.e., for this model each bond ro­
tational state is accorded a statistical weight of unity without 
regard for the states of neighboring bonds. It follows that (sin 
if) = < cos ¥>) = 0, and hence that ( r1) and (P,} = (7} (with­
out restriction on r) coincide with values for the corresponding 
chain with free rotation. The correspondence does not hold for 
higher moments, however. 

Conformations of model chains comprising n bonds were 
assigned on the basis of sets of n computer-generated random 
numbers, the state of each bond being identified with an equal 
interval of the numerical range in keeping with the stipulation 
above. The quantities/1 ;o •. -f\-6 were calculated according 
to eq 23 for each chain thus generated. It was expedient to 
compute the second moment (r2) required by these polyno­
mials using exact algebraic methods3,6 instead of relying on 
Monte Carlo chains for this purpose. Substitution of the/1;2s 
thus evaluated in eq 27 yielded Px at r = 0 for the given Monte 
Carlo chain. Averages for 8000 Monte Carlo chains at every 
integral value of n in the range 6-30 were identified with the 
corresponding configurational average (P\)r=a = <7)r=o. the 
series according to eq 27 being truncated at the term in/i ;6; 
the Hermite series was replaced by unity, as for a Gaussian 
distribution W(r). Results of these calculations are summa­
rized in Figure 2 where (P1 ) r = 0 is plotted against the number 
n of bonds in the chain. The respective curves represent data 
for the several values of the valence angle supplement 8 indi­
cated with each curve. For 8 = 70°, the probable error for an 
individual point is indicated. Error bars are virtually the same 
for other values of 8. 

The trend of (Px ) r = 0 = (y)r=0 toward negative values of 
increasing magnitude with decrease in n illustrated by the 8 
= 70° curve in Figure 2 appears to be general for 8 < 90° on 
the basis of numerous computations for various model chains 
and for real ones as represented in the RIS scheme. Some of 
these computations are presented below (see Figure 5) and in 
the following papers.1CU4 The implication that 2T0(I) falls 
below unity for chains of this class is confirmed by calculations 
of higher averaged Legendre polynomials, (Pk)r=o- Their 
contributions to 2T0(I) appear to be considerably smaller than 
that of ( P 1 ) ^ 0 = (7> r = 0 in all cases investigated with 6 < 
90°, very small values of n excepted. They vanish rapidly with 

Figure 3. Schematic representation of a chain of n atoms. See text for 
details. 

0 

n, however. Thus, an adverse directional correlation appears 
) for t 0 ke Seneral for realistic bond angles, 
weighted, For 0 > 90°, the trend of (7 ) r = 0 is positive with decreasing 
=,± 120°. n; see Figure 2. This observation is believed to be general also, 
and with although it is supported by fewer computations. 
>nd angle T h e b e h a v i o r o f ^ , ^ - 0 = ( 7 ) r . „ w; th n briefly described 

and illustrated in Figure 2 led us to the following hypothesis, 
best explained by reference to Figure 3. The fixed bond angle 
8 imposes correlations between successive bonds. In real chains 

:asured these are enhanced and perpetuated over greater ranges by 
and all hindrances to rotation and usually by strong neighbor depen-
•e taken dences of these hindrances also. If one chooses an internal 
ond ro- frame of reference affixed to the first two bonds of the chain, 
without then the distribution of chain vector r is found to be highly 
iat (sin asymmetric for a chain of finite length (n < ~50).16-18 This 
• (with- asymmetry is manifested most notably in the persistence 
xrnding vector6''9 a defined as the average of r over all configurations 
iold for of the chain, averaging being performed in the internal refer­

ence frame defined by bonds 1 and 2; see Figure 3. For chains 
Is were with B « 70°, the projection of a on the direction of the first 
•andom bond (the X axis in Figure 1) is positive and may be fairly large; 
n equal usually it is several times the bond length.16"18 To meet the 
illation distance requirement for ring closure, a configuration must, 
iording in a manner of speaking, overcome its natural tendency to 
lient to proceed toward the neighborhood of the terminus of a. An 
xilyno- immediate consequence is a marked diminution in the density 
»dng on W(O) of chain vectors with r «* 0. This density may fall sub-
he/! ;2s stantially below predictions for a spherical Gaussian distri-
Monte bution centered at the zeroth atom. The equilibrium constant 
t every Kx may be lowered appreciably on this account. 
ith the With reference to fulfillment of the direction condition, we 
=0, the observe that most of those configurations meeting the condition 
in/i;6; r„ = r = 0 will approach the origin from the direction of a. 
iussian Stated more exactly, for those configurations for which r « 0 
imma- the angle 8 between the positive directions of bond vectors Xn 
umber and a will more frequently be obtuse than acute. The projection 
it data of a on 1, being positive, the direction of bond n relative to bond 
8 indi- 1 when r « 0 tends therefore to be unfavorable for ring closure, 
for an Thus, the asymmetry of the distribution of configurations 

e same about atom 0 disfavors the rearward approach required for ring 

closure at an acceptable bond angle, 
lues of We thus arrive at a qualitative explanation for adverse di-
y the 8 rectional correlations when 8 < 90°. In order to develop this 
90° on hypothesis in quantitative terms, we observe that atom n - 1 
chains must occur on the perimeter of the base of a cone with axis 
Dme of collinear with the X axis (see Figure 3) and with generators 
and in of the required length and direction for ring closure. The height 
) falls of the cone is d = I cos 8. Thus, the chain vector r„_, is required 
lations to have a component ~d along the X axis. 
Their Ignoring the difference between the distributions Wn- \ and 
;r than Wn for bonds n - 1 and n, respectively, we consider the dis-
th 8 < tribution Wa(p) of vectors p = r - a for the chain of n bonds 
y with about the terminus of a.16'20 We take Wa(-a - d) as an ap-
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Figure 4. The approximate directional correlation index Dx according to 
eq 29 for the simple chains represented in Figure 2. 

Figure 5. Averaged Legendre polynomials of the first order, with r = 0, 
for three model chains with rotational states at 0 and ±120°. (1) Inde­
pendent and equally weighted conformations, all angles d = 70°. (2) In­
dependent and equally weighted conformations with alternating angles, 
6 = 70 and 40°. (3) Chain with 6 = 70° and nonequivalent, interdependent 
rotational states as specified by the statistical weight parameters a = 0.5 
and a) = 0, see text. Calculations were carried out according to eq 27 
truncated at/i ;6 and eq 25 truncated at g$. 

proximation to the required mean density over the perimeter. 
In order to abstract the angular factor from the distance re­
quirement, we compare this density with its counterpart 
Wa(—a + d) on the opposite side of the origin. On this basis, 
the ratio 

Dx = ^ a ( - a - d ) / ^ a ( - a + d) (28) 

should provide an approximate measure of the directional 
factor for the chain with x units or n bonds. 

For our purposes it will suffice to approximate Wa(p) by the 
three-dimensional Gaussian distribution 

Wa(p) = (Const) CXPt-(V2)PT(PpT)-1P] (29) 

where pT is the transpose of p and (ppJ) is the second moment 
tensor averaged over all configurations of the chain.6,20 (The 
distinction between this anisotropic Gaussian distribution 

W 0.4 

Figure 6. The directional correlation index Dx and correlation factor 
2To(I) for the model chains represented in Figure 5. The latter quantities 
were calculated according to eq 19 truncated at k = 5 from moments taken 
as averages from sets of 15 000 Monte Carlo chains. 

about the terminus of a and the conventional spherical 
Gaussian about atom 0 is important.) Substitution in eq 28 
gives 

Dx = exp(-2aT(ppT)-1d) (30) 

The persistence vector a and the second moment tensor (ppT) 
averaged in the same reference frame (see above) are readily 
calculated by methods given previously.6,17,21 

Results of calculations of Dx carried out in this manner for 
the model chains treated above are shown in Figure 4. The 
anticipated adverse (Dx < 1) and favorable (Dx > 1) corre­
lations for 6 < 90° and for 9 > 90°, respectively, are con­
firmed. 

In Figure 5 we show values of (P1)^0 = (y ) r = 0 calculated 
for three model chains: (1) the threefold, equally weighted 
chain treated above, with 6 = 7Q°; (2) the chain with alter­
nating angle supplements 6 = 70 and 40° (resembling PDMS 
in this respect), likewise with three, equally weighted states 
for each bond; and (3) the simple chain with 6 = 70° and 
gauche (±120°) states weighted by the factor a = 0.5 relative 
to a weight of unity for trans, the g±gT combinations being 
excluded (co = 0; see ref 3). The lattermost chain resembles 
polymethylene. For models 1 and 2,15 000 Monte Carlo chains 
were generated with the rotational state of each bond assigned 
an equal range of random numbers. For model 3, 25 000 chains 
were generated, the random number ranges being apportioned 
according to the conditional probabilities calculated by RIS 
methods described previously.3,16 The averaged quantities 
(Px )r=o were calculated as described above using eq 27 with 
Ji(Q) calculated according to eq 25 truncated at g4; see eq 26. 
The probable error for an individual point is indicated at sev­
eral values of n in Figure 5. 

Reduction of 8 to 40° at alternate bonds reduces (P\ )r=o 
= (y)r=o as expected; compare curves 1 and 2 in Figure 5. The 
reduced incidence of gauche states and the neighbor correla­
tions between states of neighboring bonds, implicit in sup­
pression of g±g=F pairs, lowers (7)^=0 markedly (curve 3) 
relative to its value for the equally weighted chain (curve 1) 
having the same number of bonds. 

In the upper part of Figure 6 we show 2To(I) calculated 
according to eq 19 for model chains 1 and 2. Averaged Le-
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gendre polynomials (Pk)r=0 were evaluated up to and in­
cluding that for k = 5. The moments </'2>r-o • • • <-Ps>r=o that 
are required for this purpose, in addition to (Pi >r=o shown in 
Figure 5, were evaluated in the manner described above, the 
series in eq 27 being truncated at A-6 in each instance. The 
implications of the first moments (P\)r=o = <7>r=o and their 
dependence on n as shown in Figure 5 are confirmed in Figure 
6. Results of similar calculations for chains of kind (3) are not 
shown since A-6 is large for k > 2, being on the order of 0.5; 
hence, truncation of eq 27 at this term is premature. These 
calculations indicated however that 2To(I) for chain (3) is 
substantially lower than for the other two model chains. 

Also shown in Figure 6 are values of Dx calculated as set 
forth above. The correspondence between this index and 2To(I) 
is not quantitative. Nevertheless, it supports the hypothesis 
offered above in explanation of the consistently unfavorable 
correlations between directions of the terminal bonds at ring 
closure (r « o) when 6 < 90°. 

Applications of the theory presented in this paper are 
demonstrated in the two articles10'14 that follow. There we treat 
cyclization in each of two series of polymer homologues, 
namely, PDMS10 and poly(aminocaproamide).14 Conver­
gences of the series in eq 27 and 19 are examined in greater 
detail in these two papers. 
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Appendix 

Fourier transformation of eq 20 gives 

Fk(q) = J"Zr ( ^ > rexp(/q-r)dr (Al) 

or, from eq 24 

Fk(q) = ZSW(r)(Pk)texp(iq-T)dr (A2) 

Let r be specified in a reference frame external to the chain. 
Then W(r) and (Pk) t, being averages over all bond vectors 1, 
depend only on the magnitude r of vector r, and eq A2 reduces 
to 

Fk(q) = Z JJ W(r)(Pk)r(qr)-' sin (qr)Airr2 dr 

Series expansion of sin (qr) and integration gives 

Fk(q) = Z [(Pk) - i (Pkr
2)q2 + ^ </V4><74 - . . ] 

(A3) 

Division of this equation by exp(q2(r2)/6) and multiplication 
by the series expansion of this exponential yields 
Fk(q) = Zcxp(-q2(r2)/6) 

where/t;o,/fc;2, etc., are defined by eq 23. 
Fourier inversion of eq A4 gives 

ZAPk)r = (2tr)-3/Ffc(q) exp(-;q • r) dq 

= ( 2 ^ ) - 1 J ^ F * ( q ) t e r ) - ' sin (qr)q2 dq 

Substitution from eq A4, series expansion of sin (qr), and in­
tegration in series leads to the result 

<*»*>,= (Zr/Z)-i(3/2x<r2»V2 { [ A < , - | A . 2 

+ 3 ' f - ^ f 4- 1 3If 5f 
22-2! ? 3 -3 ' 1 2 ~ Zk : 1 

7 .3 9 . 3 1 ' 2 , 32 r 
23 

2 4 

.If 1 9 -7 -3 _ I 
2 A/2 + 23 . 5 JkA J 

which for r = 0 reduces to eq 22. 

2 \2 (r2) 
(A5) 

(r2) P 2 \ 2 

X JAo " ^fk;iq2 + ^ T / t ; 4 ? 4 " •.. I (A4) 
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